Arroyo-Olarte, R. D., Bravo Rodríguez, R. and Morales-Ríos, E. 2021. Genome editing in bacteria: Crispr-cas and beyond.
Microorganisms 9: 844.
Blackman, L. M., Cullerne, D. P. and Hardham, A. R. 2014. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the
Phytophthora parasitica genome.
BMC Genomics 15: 785.
Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M. et al. 2018. Ten things you should know about transposable elements.
Genome Biol. 19: 199.
Campbell, A. C., Robinson, R., Mena-Aguilar, D., Sobrado, P. and Tanner, J. J. 2020. Structural determinants of flavin dynamics in a class B monooxygenase.
Biochemistry 59: 4609-4616.
Davis, L., Young, K. and DiRita, V. 2008. Genetic manipulation of
Campylobacter jejuni
. Curr. Protoc. Microbiol.. Chapter 8: Unit 8A.2.1-8A.2.17
Dubin, M. J., Mittelsten Scheid, O. and Becker, C. 2018. Transposons: a blessing curse.
Curr. Opin. Plant Biol. 42: 23-29.
Ebrahimi, V. and Hashemi, A. 2020. Challenges of
in vitro genome editing with CRISPR/Cas9 and possible solutions: a review.
Gene 753: 144813.
Feddersen, C. R., Wadsworth, L. S., Zhu, E. Y., Vaughn, H. R., Voigt, A. P., Riordan, J. D. et al. 2019. A simplified transposon mutagenesis method to perform phenotypic forward genetic screens in cultured cells.
BMC Genomics 20: 497.
Franceschini, S., Fedkenheuer, M., Vogelaar, N. J., Robinson, H. H., Sobrado, P. and Mattevi, A. 2012. Structural insight into the mechanism of oxygen activation and substrate selectivity of flavin-dependent N-hydroxylating monooxygenases.
Biochemistry 51: 7043-7045.
Gao, P., Liu, Z. and Wen, J. 2020. Expression profiling of plant cell wall-degrading enzyme genes in
Eucryptorrhynchus scrobiculatus midgut.
Front. Physiol. 11: 1111.
Ha, D.-G. and O'Toole, G. A. 2015. c-di-GMP and its effects on biofilm formation and dispersion: a pseudomonas aeruginosa review.
Microbiol. Spectr. 3: MB-0003-2014
Ham, H., Kim, K., Yang, S., Kong, H. G., Lee, M.-H., Jin, Y. J. et al. 2022. Discrimination and detection of
Erwinia amylovora and
Erwinia pyrifoliae with a single primer set.
Plant Pathol. J. 38: 194-202.
Hull, T. D., Ryu, M.-H., Sullivan, M. J., Johnson, R. C., Klena, N. T., Geiger, R. M. et al. 2012. Cyclic Di-GMP phosphodiesterases RmdA and RmdB are involved in regulating colony morphology and development in
Streptomyces coelicolor
.
J. Bacteriol. 194: 4642-4651.
Husna, A. U., Wang, N., Cobbold, S. A., Newton, H. J., Hocking, D. M., Wilksch, J. J. et al. 2018. Methionine biosynthesis and transport are functionally redundant for the growth and virulence of
Salmonella Typhimurium.
J. Biol. Chem. 293: 9506-9519.
Jenal, U., Reinders, A. and Lori, C. 2017. Cyclic di-GMP: second messenger extraordinaire.
Nat. Rev. Microbiol. 15: 271-284.
Kamber, T., Smits, T. H. M., Rezzonico, F. and Duffy, B. 2012. Genomics and current genetic understanding of
Erwinia amylovora and the fire blight antagonist
Pantoea vagans
.
Trees 26: 227-238.
Kawakami, K., Largaespada, D. A. and Ivics, Z. 2017. Transposons as tools for functional genomics in vertebrate models.
Trend Genet. 33: 784-801.
Kharadi, R. R., Selbmann, K. and Sundin, G. W. 2022. A complete twelve-gene deletion null mutant reveals that cyclic di-GMP is a global regulator of phase-transition and host colonization in
Erwinia amylovora
.
PLoS Pathog. 18: e1010737.
Kim, W.-S., Gardan, L., Rhim, S.-L. and Geider, K. 1999.
Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees
(Pyrus pyrifolia Nakai).
Int. J. Syst. Bacteriol. 49: 899-906.
Kim, W.-S., Hildebrand, M., Jock, S. and Geider, K. 2001. Molecular comparison of pathogenic bacteria from pear trees in Japan and the fire blight pathogen
Erwinia amylovora
.
Microbiology 147: 2951-2959.
Krol, E., Schäper, S. and Becker, A. 2020. Cyclic di-GMP signaling controlling the free-living lifestyle of alpha-proteobacterial rhizobia.
Biol. Chem. 401: 1335-1348.
Kube, M., Migdoll, A. M., Gehring, I., Heitmann, K., Mayer, Y., Kuhl, H. et al. 2010. Genome comparison of the epiphytic bacteria
Erwinia billingiae and
E. tasmaniensis with the pear pathogen
E. pyrifoliae
.
BMC Genomics 11: 393.
Lee, G. M., Ko, S., Oh, E.-J., Song, Y.-R., Kim, D. and Oh, C.-S. 2020. Comparative genome analysis reveals natural variations in the genomes of
Erwinia pyrifoliae, a black shoot blight pathogen in apple and pear.
Plant Pathol. J. 36: 428-439.
Lee, G. M., Oh, E.-J., Ko, S., Park, J., Park, D. H., Kim, D. et al. 2018. Draft genome sequence of a bacterial plant pathogen Erwinia pyrifoliae strain EpK1/15 isolated from an apple twig showing black shoot blight. Korean J. Microbiol. 54: 69-70.
Lin, T., Troy, E. B., Hu, L. T., Gao, L. and Norris, S. J. 2014. Transposon mutagenesis as an approach to improved understanding of
Borrelia pathogenesis and biology.
Front. Cell. Infect. Microbiol. 4: 63.
Llop, P., Barbé, S. and López, M. M. 2012. Functions and origin of plasmids in
Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees.
Trees 26: 31-46.
Muñoz-López, M. and García-Pérez, J. L. 2010. DNA transposons: nature and applications in genomics.
Curr. Genomics 11: 115-128.
Naorem, S. S., Han, J., Zhang, S. Y., Zhang, J., Graham, L. B., Song, A. et al. 2018. Efficient transposon mutagenesis mediated by an IPTG-controlled conditional suicide plasmid.
BMC Microbiol. 18: 158.
Orlando, M., Buchholz, P. C. F., Lotti, M. and Pleiss, J. 2021. The GH19 engineering database: sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19.
PLoS One 16: e0256817.
Pal, C., Bengtsson-Palme, J., Kristiansson, E. and Larsson, D. G. J. 2015. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential.
BMC Genomics 16: 964.
Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C.-S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both
Erwinia amylovora and
Erwinia pyrifoliae causing severe diseases in apple and pear.
Plant Pathol. J. 34: 445-450.
Penkov, D., Zubkova, E. and Parfyonova, Y. 2023. Tn5 DNA transposase in multiomics research.
Methods Protoc. 6: 24.
Rafiei, V., Vélëz, H. and Tzelepis, G. 2021. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence.
Int. J. Mol. Sci. 22: 9359.
Reznikoff, W. S. 2008. Transposon Tn5.
Annu. Rev. Genet. 42: 269-286.
Rhim, S.-H., Völksch, B., Gardan, L., Paulin, J.-P., Langlotz, C., Kim, W.-S. et al. 1999.
Erwinia pyrifoliae, an
Erwinia species different from
Erwinia amylovora, causes a necrotic disease of Asian pear trees.
Plant Pathol. 48: 514-520.
Romero Victorica, M., Soria, M. A., Batista-García, R. A., Ceja-Navarro, J. A., Vikram, S., Ortiz, M. et al. 2020. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes.
Sci. Rep. 10: 3864.
Sanchez, M. R., Payen, C., Cheong, F., Hovde, B. T., Bissonnette, S., Arkin, A. P. et al. 2019. Transposon insertional mutagenesis in
Saccharomyces uvarum reveals trans-acting effects influencing species-dependent essential genes.
Genome Res. 29: 396-406.
Sato, S., Arimura, Y., Kujirai, T., Harada, A., Maehara, K., Nogami, J. et al. 2019. Biochemical analysis of nucleosome targeting by Tn5 transposase.
Open Biol. 9: 190116.
Shin, D.-S., Heo, G.-I., Son, S.-H., Oh, C.-S., Lee, Y.-K. and Cha, J.-S. 2018. Development of an improved loop-mediated isothermal amplification assay for on-site diagnosis of fire blight in apple and pear.
Plant Pathol. J. 34: 191-198.
Smits, T. H. M., Rezzonico, F., Kamber, T., Blom, J., Goesmann, A., Frey, J. E. et al. 2010. Complete genome sequence of the fire blight pathogen
Erwinia amylovora CFBP 1430 and comparison to other
Erwinia spp.
Mol. Plant Microbe Interact. 23: 384-393.
Thapa, S. P., Park, D. H., Kim, W. S., Choi, B. S., Lim, J. S., Choi, I. Y. et al. 2013. Comparative genomics of Japanese
Erwinia pyrifoliae strain Ejp617 with closely related erwinias.
Genome 56: 83-90.
Thompson, D. W., Casjens, S. R., Sharma, R. and Grose, J. H. 2019. Genomic comparison of 60 completely sequenced bacteriophages that infect
Erwinia and/or
Pantoea bacteria.
Virology 535: 59-73.
Valentini, M. and Filloux, A. 2016. Biofilms and Cyclic di-GMP (c-di-GMP) signaling: lessons from
Pseudomonas aeruginosa and other bacteria.
J. Biol. Chem. 291: 12547-12555.
Wetmore, K. M., Price, M. N., Waters, R. J., Lamson, J. S., He, J., Hoover, C. A. et al. 2015. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons.
mBio 6: e00306-e315.
Zhang, X., Wang, T., Zhou, W., Jia, X. and Wang, H. 2013. Use of a Tn5-based transposon system to create a cost-effective
Zymomonas mobilis for ethanol production from lignocelluloses.
Microb. Cell Fact. 12: 41.