Abawi, G. S. and Grogan, R. G. 1979. Epidemiology of diseases caused by
Sclerotinia species
.
Phytopathology 69: 899-904.
Abd‐Alla, M. H. 1994. Phosphatases and the utilization of organic phosphorus by
Rhizobium leguminosarum biovar
viceae
.
Lett. Appl. Microbiol. 18: 294-296.
Alexander, D. B. and Zuberer, D. A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria.
Biol. Fertil. Soils 12: 39-45.
Alnahdi, H. S. 2012. Isolation and screening of extracellular proteases produced by new isolated
Bacillus sp.
J. Appl. Pharm. Sci. 2: 071-074.
Asari, S., Matzén, S., Petersen, M. A., Bejai, S. and Meijer, J. 2016. Multiple effects of
Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.
FEMS Microbiol. Ecol. 92: fiw070.
Bardin, S. D. and Huang, H. C. 2001. Research on biology and control of Sclerotinia diseases in Canada. Can. J. Plant Pathol. 23: 88-98.
Cavaglieri, L., Orlando, J., Rodríguez, M. I., Chulze, S. and Etcheverry, M. 2005. Biocontrol of
Bacillus subtilis against
Fusarium verticillioides in vitro and at the maize root level.
Res. Microbiol. 156: 748-754.
Dunne, C., Crowley, J. J., Moënne-Loccoz, Y., Dowling, D. N., Bruijn, S. and O'Gara, F. 1997. Biological control of
Pythium ultimum by
Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity.
Microbiology 143: 3921-3931.
Jangir, M., Pathak, R., Sharma, S. and Sharma, S. 2018. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol. Control 123: 60-70.
Johnson, J. S., Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demko-wicz, P., Chen, L. et al. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis.
Nat. Commun. 10: 5029.
Jones, D. L. and Darrah, P. R. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere.
Plant Soil 166: 247-257.
Katoh, K. and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
Mol. Biol. Evol. 30: 772-780.
Khan, M. S., Zaidi, A. and Wani, P. A. 2007. Role of phosphate solubilizing microorganisms in sustainable agriculture - a review.
Agron. Sustain. Dev. 27: 29-43.
Kuddus, M. and Ahmad, I. Z. 2013. Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase.
J. Genet. Eng. Biotechnol. 11: 39-46.
Lee, H.-J., Kim, J.-Y., Lee, J.-G. and Hong, S.-S. 2014. Biological control of lettuce Sclerotinia rot by
Bacillus subtilis GG95.
Kor. J. Mycol. 42: 225-230. (In Korean)
Lee, S. C. 2004. Control of major disease in greenhouse crops. Kor. Res. Soc. Protected Hort. 17: 2-9. (In Korean)
Lee, Y. Y., Lee, Y., Kim, Y. S., Kim, H. S. and Jeon, Y. H. 2020. Control of red pepper anthracnose using
Bacillus subtilis YGB36, a plant growth promoting rhizobacterium.
Res. Plant Dis. 26: 8-18. (In Korean)
Massawe, V. C., Hanif, A., Farzand, A., Mburu, D. K., Ochola, S. O., Wu, L. et al. 2018. Volatile compounds of endophytic Bacillus spp. have biocontrol activity against. Sclerotinia sclerotiorum. Phytopathology 108: 1373-1385.
Nam, K. U. 2001. Development of control measures and ecology against main plants disease in greenhouse. Prot. Hortic. 14: 23-29. (In Korean)
Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms.
FEMS Microbiol. Lett. 170: 265-270.
Pérez-García, A., Romero, D. and de Vicente, A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture.
Curr. Opin. Biotechnol. 22: 187-193.
Persello‐Cartieaux, F., Nussaume, L. and Robaglia, C. 2003. Tales from the underground: molecular plant-rhizobacteria interactions.
Plant Cell Environ. 26: 189-199.
Rahman, M. M. E., Hossain, D. M., Suzuki, K., Shiiya, A., Suzuki, K., Dey, T. K. et al. 2016. Suppressive effects of
Bacillus spp. on mycelia, apothecia and sclerotia formation of
Sclerotinia sclerotiorum and potential as biological control of white mold on mustard.
Australasian Plant Pathol. 45: 103-117.
Shafi, J., Tian, H. and Ji, M. 2017.
Bacillus species as versatile weapons for plant pathogens: a review.
Biotechnol. Biotechnol. Equip. 31: 446-459.
Sharma, N. and Sharma, S. 2008. Control of foliar diseases of mustard by
Bacillus from reclaimed soil.
Microbiol. Res. 163: 408-413.
Statistics Korea. 2020. Index of agriculture and forestry production. Statistics Korea, Daejeon, Korea. (In Korean)
Stein, T. 2005.
Bacillus subtilis antibiotics: structures, syntheses and specific functions.
Mol. Microbiol. 56: 845-857.
Subbarao, K. V. 1998. Progress toward integrated management of lettuce drop.
Plant Dis. 82: 1068-1078.
Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere.
J. Exp. Bot. 52: 487-511.
Wu, Y., Zhou, J., Li, C. and Ma, Y. 2019. Antifungal and plant growth promotion activity of volatile organic compounds produced by
Bacillus amyloliquefaciens
.
MicrobiologyOpen 8: e00813.