Ahn, U. S. and Yun, Y. S. 2020. Causes of decline in the Korean fir based on spatial distribution in the Mt. Halla region in Korea: a meta-analysis.
Forests 11: 391.
Alawiye, T. T. and Babalola, O. O. 2019. Bacterial diversity and community structure in typical plant rhizosphere.
Diversity 11: 179.
Anderson, M. J. 2017. Permutational multivariate analysis of variance (PERMANOVA). In: Wiley StatsRef: Statistics Reference Online, eds. by N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J. L. Teugels, pp. 1-15. John Wiley and Sons Ltd., Chich-ester, UK.
Bei, Q., Moser, G., Müller, C. and Liesack, W. 2021. Seasonality affects function and complexity but not diversity of the rhizosphere microbiome in European temperate grassland.
Sci. Total Environ. 784: 147036.
Burke, D. J., Kretzer, A. M., Rygiewicz, P. T. and Topa, M. A. 2006. Soil bacterial diversity in a loblolly pine plantation: influence of ectomycorrhizas and fertilization.
FEMS Microbiol. Ecol. 57: 409-419.
Cho, G., Gang, G. H., Jung, H. Y. and Kwak, Y. S. 2022. Exploration of mycobiota in
Cypripedium japonicum, an endangered species.
Mycobiology 50: 142-149.
Dawson, W., Hör, J., Egert, M., van Kleunen, M. and Pester, M. 2017. A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization.
Front. Microbiol. 8: 975.
Dohrmann, A. B., Küting, M., Jünemann, S., Jaenicke, S., Schlüter, A. and Tebbe, C. C. 2013. Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties.
ISME J. 7: 37-49.
Gwon, J. H., Sin, M. K., Kwon, H. J. and Song, H. K. 2013. A study on the forest vegetation of Jirisan National Park.
J. Korean Soc. Environ. Rest. Technol. 16: 93-118.
Han, G., Mannaa, M., Jeon, H., Jung, H., Kim, J. C., Park, A. R. et al. 2022. Dysbiosis in the rhizosphere microbiome of standing dead Korean fir (
Abies koreana).
Plants (Basel) 11: 990.
Hawes, M. C., Bengough, G., Cassab, G. and Ponce, G. 2002. Root caps and rhizosphere.
J. Plant Growth Regul. 21: 352-367.
Jeong, M., Tagele, S. B., Kim, M. J., Ko, S. H., Kim, K. S., Koh, J. G. et al. 2023. The death of Korean fir (
Abies koreana) affects soil symbi-otic fungal microbiome: preliminary findings.
Front. For. Glob. Change 5: 1114390.
Ji, R. Q., Xie, M. L., Li, G. L., Xu, Y., Gao, T. T., Xing, P. J. et al. 2022. Response of bacterial community structure to different ecological niches and their functions in Korean pine forests.
PeerJ 10: e12978.
Kim, H. S., Lee, S. M. and Song, H. K. 2011. Actual vegetation distribution status and ecological succession in the Deogyusan National Park. Korean J. Environ. Ecol. 25: 37-46.
Latif, S., Bibi, S., Kouser, R., Fatimah, H., Farooq, S., Naseer, S. et al. 2020. Characterization of bacterial community structure in the rhizosphere of
Triticum aestivum L.
Genomics 112: 4760-4768.
Lee, J. H. and Hong, S. K. 2009. Comparative analysis of chemical compositions and antimicrobial activities of essential oils from
Abies holophylla and
Abies koreana.
J. Microbiol. Biotechnol. 19: 372-377.
Liu, G. Y., Chen, L. L., Shi, X. R., Yuan, Z. Y., Yuan, L. Y., Lock, T. R. et al. 2019. Changes in rhizosphere bacterial and fungal community composition with vegetation restoration in planted forests.
Land Degrad. Dev. 30: 1147-1157.
Lladó, S., López-Mondéjar, R. and Baldrian, P. 2017. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change.
Microbiol. Mol. Biol. Rev. 81: e00063-16.
Mannaa, M., Han, G., Jung, H., Park, J., Kim, J. C., Park, A. R. et al. 2023.
Aureobasidium pullulans treatment mitigates drought stress in
Abies koreana via rhizosphere microbiome modulation.
Plants (Basel) 12: 3653.
Oppenheimer-Shaanan, Y., Jakoby, G., Starr, M. L., Karliner, R., Eilon, G., Itkin, M. et al. 2022. A dynamic rhizosphere interplay between tree roots and soil bacteria under drought stress. e. Life 11: e79679.
Phillips, R. P. and Fahey, T. J. 2006. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects.
Ecology 87: 1302-1313.
Prashar, P., Kapoor, N. and Sachdeva, S. 2014. Rhizosphere: its structure, bacterial diversity and significance.
Rev. Environ. Sci. and Bio/Technol. 13: 63-77.
Shannon, C. E. 1948. A mathematical theory of communication.
Bell Syst. Tech. J. 27: 379-423.
Smalla, K., Sessitsch, A. and Hartmann, A. 2006. The rhizosphere: ‘soil compartment influenced by the root’.
FEMS Microbiol. Ecol. 56: 165.
Song, J. H., Han, S. H., Lee, S. H. and Yun, C. W. 2021. Ecological characteristic of Abies koreana stand structure of Mt. Jirisan and Mt. Hallasan. J. Korean Soc. Forest Sci. 110: 590-600.
Wilson, E. H. 1920. Four new conifers from Korea.
J. Arnold Arbor. 1: 186-190.
Xu, J., Zhang, Y., Zhang, P., Trivedi, P., Riera, N., Wang, Y. et al. 2018. The structure and function of the global citrus rhizosphere microbiome.
Nature Commun. 9: 4894.
Xu, T., Shen, Y., Ding, Z. and Zhu, B. 2023. Seasonal dynamics of microbial communities in rhizosphere and bulk soils of two temperate forests.
Rhizosphere 25: 100673.
Yang, J., Kloepper, J. W. and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress.
Trends Plant Sci. 14: 1-4.