Ahmad, A., Saraswat, D. and El Gamal, A. 2022. A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools.
Smart Agric. Technol. 3: 100083.
Baek, M.-K., Park, H.-S., Lee, C.-M., Lee, H.-J., Jeong, J.-M., Ahn, E.-K. et al. 2021. Identification of stable resistance genes based on resistance evaluation to blast for monogenic lines and leading Japonica varieties in rice.
Korean J. Breed. Sci. 53: 217-229. (In Korean)
Chung, H., Jeong, D. G., Lee, J.-H., Kang, I. J., Shim, H.-K., An, C. J. et al. 2022. Outbreak of rice blast disease at Yeoju of Korea in 2020.
Plant Pathol. J. 38: 46-51.
Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D. et al. 2012. The top 10 fungal pathogens in molecular plant pathology.
Mol. Plant Pathol. 13: 414-430.
Fenu, G. and Malloci, F. M. 2021. Forecasting plant and crop disease: an explorative study on current algorithms.
Big Data Cogn. Comput. 5: 2.
Ferentinos, K. P. 2018. Deep learning models for plant disease detection and diagnosis.
Comput. Electron. Agric. 145: 311-318.
Han, S.-S., Ryu, J. D., Shim, H.-S., Lee, S.-W., Hong, Y.-K. and Cha, K.-H. 2001. Breakdown of resistance of rice cultivars by new race KI-1117a and race distribution of rice blast fungus during 1999~2000 in Korea. Res. Plant Dis. 7: 86-92. (In Korean)
Kang, S. W. and Kim, H. K. 1994. Factors affecting unusually severe outbreak of rice blast in Gyeongnam province in 1993. Korean J. Plant Pathol. 10: 78-82. (In Korean)
Kang, W. S., Seo, M.-C., Hong, S. J., Lee, K. J. and Lee, Y. H. 2019. Outbreak of rice panicle blast in southern provinces of Korea in 2014.
Res. Plant Dis. 25: 196-204. (In Korean)
Kim, C.-H. 2002. Current status and future prospect of plant disease forecasting system in Korea.
Res. Plant Dis. 8: 84-91. (In Korean)
Kim, K.-H. and Lee, J. 2020. Smart plant disease management using agrometeorological big data.
Res. Plant Dis. 26: 121-133. (In Korean)
Kim, Y. 2014. Investment analysis of insects and diseases prevention of rice in public using a real option approach. Ph.D. thesis. Seoul National University, Seoul, Korea. 59 pp. (In Korean)
Korea Seed and Variety Service. 2020. List of variety characteristics for government-supplied species in 2021. URL
https://www.seed.go.kr/ [20 May 2022].
Lee, S. and Kim, K.-H. 2018. Predicting potential epidemics of rice leaf blast disease using climate scenarios from the best global climate model selected for individual agro-climatic zones in Korea.
J. Clim. Change Res. 9: 133-142. (In Korean)
Lee, Y.-H. 2012. Pest monitoring, prediction: one-stop processing up to diagnosis. Life Agrochem. 277: 22-25. (In Korean)
Lee, Y. H., Ra, D.-S., Yeh, W.-H., Choi, H.-W., Myung, I.-S., Lee, S.-W. et al. 2010. Survey of major disease incidence of rice in Korea during 1999-2008.
Res. Plant Dis. 16: 183-190. (In Korean)
Mohanty, S. P., Hughes, D. P. and Salathé, M. 2016. Using deep learning for image-based plant disease detection.
Front. Plant Sci. 7: 1419.
Pletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J. X. and Jensen, L. J. 2015. DISEASES: text mining and data integration of disease-gene associations.
Methods 74: 83-89.
Ristaino, J. B., Anderson, P. K., Bebber, D. P., Brauman, K. A., Cunniffe, N. J., Fedoroff, N. V. et al. 2021. The persistent threat of emerging plant disease pandemics to global food security.
Proc. Natl. Acad. Sci. U. S. A. 118: e2022239118.
Shim, H.-S., Kim, Y.-K., Hong, S.-J., Han, S.-S. and Sung, J.-M. 2003. Assessments of yield and quality of rice affected by rice panicle blast.
Res. Plant Dis. 9: 183-188. (In Korean)
Van Driel, M. A., Bruggeman, J., Vriend, G., Brunner, H. G. and Leunis-sen, J. A. 2006. A text-mining analysis of the human phenome.
Eur. J. Hum. Genet. 14: 535-542.