Ahmad F, Ahmad I, and Khan M. S. (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res 163, 173-181.
Ahn J, Park M. S, Kim S. K, Choi G. J, Jang K. S, Choi Y. H, Choi J. E, Kim I. S, and Kim J. C. (2009) Suppression effect of gray mold and late blight on tomato plants by rhamnolipid B. Res. Plant Dis 15, 222-229.
Arima K, Kakinuma A, and Tamura G. (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun 31, 488-494.
Arrebola E, Jacobs R, and Korsten L. (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol 108, 386-395.
Bodour A. A, and Miller-Maier R. M. (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods 32, 273-280.
Cao X. H, Liao Z. Y, Wang C. L, Yang W. Y, and Lu M. F. (2009) Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Braz. J. Microbiol 40, 373-379.
Chitarra G. S, Breeuwer P, Nout M. J, van Aelst A. C, Rombouts F. M, and Abee T. (2003) An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol 94, 159-166.
Chopineau J, McCafferty F. D, Therisod M, and Klibanov A. M. (1988) Production of biosurfactants from sugar alcohols and vegetable oils catalyzed by lipases in a nonaqueous medium. Biotechnol. Bioeng 31, 208-214.
Chowdhury S. P, Hartmann A, Gao X, and Borriss R. (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42: a review. Front. Microbiol 6, 780.
Chung S, Kong H, Buyer J. S, Lakshman D. K, Lydon J, Kim S. D, and Roberts D. P. (2008) Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol 80, 115-123.
Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, and Annapurna K. (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Plant Growth and Health Promoting Bacteria, Maheshwari D. K (ed.) , pp.333-364. Springer, Berlin, Germany.
Huszcza E, and Burczyk B. (2003) Biosurfactant production by Bacillus coagulans. J. Surfact. Deterg 6, 61-64.
Katz E, and Demain A. L. (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev 41, 449-474.
Kim P. I, Ryu J, Kim Y. H, and Chi Y. T. (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol 20, 138-145.
Kim S. H, Lim E. J, Lee S. O, Lee J. D, and Lee T. H. (2000) Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol. Appl. Biochem 31, 249-253.
Kolter R, and Moreno F. (1992) Genetics of ribosomally synthesized peptide antibiotics. Annu. Rev. Microbiol 46, 141-163.
Kumar N. P, Swapna T. H, Sathi Reddy K, Archana K, Nageshwar L, Nalini S, Khan M. Y, and Hameeda B. (2016) Draft genome sequence of Bacillus amyloliquefaciens strain RHNK22, isolated from rhizosphere with biosurfactant (surfactin, iturin, and fengycin) and antifungal activity. Genome Announc 4, e01682-15.
Lee S. C, Jung Y. J, Yoo J. S, Cho Y. S, Cha I. H, and Choi Y. L. (2002) Characteristics of biosurfactants produced by Bacillus sp. LSC11. Korean J. Life Sci 12, 745-751.
Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton H. A, and Harbour A. (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Bacteriol 78, 97-108.
Livak K. J, and Schmittgen T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408.
Marahiel M. A, Nakano M. M, and Zuber P. (1993) Regulation of peptide antibiotic production in Bacillus. Mol. Microbiol 7, 631-636.
Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki M. A, Manresa A, and Ghribi D. (2016) Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ. Sci. Pollut. Res. Int 23, 6690-6699.
Mnif I, Hammami I, Triki M. A, Azabou M. C, Ellouze-Chaabouni S, and Ghribi D. (2015) Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus Fusarium solani. Environ. Sci. Pollut. Res. Int 22, 18137-18147.
Mochizuki M, Yamamoto S, Aoki Y, and Suzuki S. (2012) Isolation and characterisation of Bacillus amyloliquefaciens S13-3 as a biological control agent for anthracnose caused by Colletotrichum gloeosporioides. Biocontrol Sci. Technol 22, 697-709.
Montesinos E. (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett 270, 1-11.
Mota M. S, Gomes C. B, Souza Júnior I. T, and Moura A. B. (2017) Bacterial selection for biological control of plant disease: criterion determination and validation. Braz. J. Microbiol 48, 62-70.
Mulligan C. N, Mahmourides G, and Gibbs B. F. (1989) The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J. Biotechnol 12, 199-209.
Nam H. S, Yang H. J, Oh B. J, Anderson A. J, and Kim Y. C. (2016) Biological control potential of Bacillus amyloliquefaciens KB3 isolated from the feces of Allomyrina dichotoma larvae. Plant Pathol. J 32, 273-280.
Ongena M, and Jacques P. (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16, 115-125.
Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J. L, and Thonart P. (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol 9, 1084-1090.
Park K, Dutta S, Park Y. S, Sang M. K, and Moon S. S. (2016) Induction of systemic resistance and tolerance against biotic and abiotic stress in chinese cabbage by cyclic peptides producing Bacillus vallismortis strain BS07M. In: Recent Trends in PGPR Research for Sustainable Crop Productivity, Sayyed R. Z, Reddy M. S, and Al-Turki A (eds.) , pp.200-205. Scientific Publishers, New Delhi, India.
Peypoux F, Bonmatin J. M, and Wallach J. (1999) Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol 51, 553-563.
Rahman A, Uddin W, and Wenner N. G. (2015) Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol. Plant Pathol 16, 546-558.
Razafindralambo H, Paquot M, Hbid C, Jacques P, Destain J, and Thonart P. (1993) Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. J. Chromatogr 639, 81-85.
Romero D, de Vicente A, Rakotoaly R. H, Dufour S. E, Veening J. W, Arrebola E, Cazorla F. M, Kuipers O. P, Paquot M, and Perez-García A. (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact 20, 430-440.
Rozen S, and Skaletsky H. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol 132, 365-386.
Sieber S. A, and Marahiel M. A. (2003) Learning from nature's drug factories: nonribosomal synthesis of macrocyclic peptides. J. Bacteriol 185, 7036-7043.
Singh A. K, Rautela R, and Cameotra S. S. (2014) Substrate dependent in vitro antifungal activity of Bacillus sp strain AR2. Microb. Cell Fact 13, 67.
Slepecky R. A, and Hemphill H. E. (2006) The genus Bacillus: nonmedical. In: The Prokaryotes, Dworkin M (ed.) 4, pp.530-562. Springer, New York, NY, USA.
Souto G. I, Correa O. S, Montecchia M. S, Kerber N. L, Pucheu N. L, Bachur M, and García A. F. (2004) Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. J. Appl. Microbiol 97, 1247-1256.
Stanghellini M. E, and Miller R. M. (1997) Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81, 4-12.
Stein T. (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol 56, 845-857.
Tendulkar S. R, Saikumari Y. K, Patel V, Raghotama S, Munshi T. K, Balaram P, and Chattoo B. B. (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol 103, 2331-2339.
Touré Y, Ongena M, Jacques P, Guiro A, and Thonart P. (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol 96, 1151-1160.
Varadavenkatesan T, and Murty V. R. (2013) Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiol 2013, 621519.
Vessey J. K. (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586.
Yamamoto S, Shiraishi S, and Suzuki S. (2015) Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?. Lett. Appl. Microbiol 60, 379-386.
Yang H. J (2015) Biological control activities of an insect endo-symbiotic bacterium Bacillus amyloliquefaciens. KB3. M.S. thesis . Chonnam National University, Gwangju, Korea.
Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, and Shirata A. (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91, 181-187.
Yu G. Y, Sinclair J. B, Hartman G. L, and Bertagnolli B. L. (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem 34, 955-963.